
the corresponding results bear little relation to graphs that arise in
real-life situations, where edges are characteristically added with
some dependence on edges that are already present.

A more interesting class of networks, which has received much
recent interest, are so-called “small networks” in which most
nodes are not directly connected to each other, but can be
reached from every other by a small number of hops. This sort
of network is often explained in the popular literature via the
“Kevin Bacon Game” in which the nodes are actors and the
edges connecting them represent their having appeared in
the same movie. The question is then posed of how many edges
one must follow (how many nodes one must hop between) to
get from Kevin Bacon to any given actor. Each actor then gets a
“Bacon number” which represents how many hops away from
Kevin Bacon they are. Remarkably, most successful actors have
a Bacon number less than or equal to 5. Such networks, in the
context of the four-quadrant human decision-making map
(Behrens & Sporns 2012), would represent a trend toward the
east –more sociality, and more chances to connect lead naturally
to such networks. Such networks have many interesting properties
including a tendency to have a small number of nodes with very
high degrees of connectivity – something that can be looked for
in (big) data. Similar patterns appear in anatomical connections
in the brain (Sporns et al. 2002) and in synchronization networks
of cortical neurons (Yu et al. 2008).

Various mechanisms can give rise to such networks, the most
popular being the Watts-Strogatz (W-S) mechanism (Watts &
Strogatz 1998), which is constructed by iteratively rewiring a
pre-existing graph (something which might be expected to
model evolution on a pre-existing network), and the Barabási–
Albert (BA) model (Barabási & Albert 1999), which is based on
the notion of preferential attachment, where new nodes are
added with connections made preferably to those which already
are more connected. The BA model, for example, has been
used to model the World Wide Web (www) where one might
well expect that more people would add new links to a more
popular (more linked to) site than to one less used. A general
review can be found in Albert and Barabási (2002).

The BA model also gives rise to an interesting distinction from
the W-S mechanism in that it gives rise to power-law or “scale-
free” networks where the number of nodes with some number
of connections depends as a power of that number. This gives
rise to long-tailed distributions (Behrens & Sporns 2012).
Indeed, this behavior is found by Bentley et al. in their Figure 1
(target article, sect. 2). Again, this sort of behavior can be
sought in big datasets and can give valuable information about
the possible origin of a given network configuration. So far we
have assumed a deviation from randomness (an appearance of
structure) due to fairly deterministic processes where, even if
edges appear randomly, their probabilities depend deterministi-
cally on other factors. Relatively little is known if one weakens
this dependence by the addition of random noise.

As an aside, we note that the north–south axis is described as
“the extent to which there is a transparent correspondence
between an individual’s decision and the consequence of that
decision” (target article, sect. 2, para. 4). If we interpret this as a
weakening of a direct cause-effect relationship, we suggest that
this might indeed be modeled as noise – something that has
been much less studied in the physics community, yet which
could surely be added to models which have been considered,
in some cases perhaps analytically, but also certainly via computer
simulations. Spin-glasses are often used to model network
dynamics (Binder & Young 1986) where a temperature-like par-
ameter represents noise, but this work tends to be done to rep-
resent correlations between activities at nodes rather than on
the dynamics which drives the formation of edges – that is, the
structure of the network itself.

Big-data approaches from the social sciences are already motiv-
ating significant new developments in characterizing brain net-
works. Over recent years, connectomic analyses of brain activity

in large datasets have elucidated the network architecture of the
brain (Behrens & Sporns 2012; Sporns 2012; Supekar & Menon
2012) and identified fundamental principles of the brain’s graphi-
cal organization (Bullmore & Sporns 2012). New approaches
promise to shed light on brain networks implicated during specific
cognitive tasks, such as altered network interrelationships during
volition regulation of emotion (Sripada et al. 2013). Such brain
mechanisms involved in specific cognitive tasks might ultimately
be helpful in understanding brain–behavior responses to real
and increasingly social stimuli – for example, parents responding
to baby-cries (Swain & Lorberbaum 2008; Swain et al. 2004;
2011), the complex array of social responses involved in parenting
(Swain 2011) – and to broader societally directed behaviors such
as altruism (Swain et al. 2012). Such approaches may be helpful
in understanding underlying mechanisms of psychiatric disorders
such as obsessive-compulsive disorder (Leckman et al. 2004;
Mayes et al. 2005), generalized social anxiety, and autism that
involve pervasively abnormal functioning in social domains.
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Abstract: While Bentley et al.’s model is very appealing, in this
commentary we argue that researchers interested in big data and
collective behavior, including the way humans make decisions, must
account for the emotional factor. We investigate how daily choice of
activities is influenced by emotions. Results indicate that mood
significantly predicts people’s decisions about what to do next, stressing
the importance of emotional state on decision-making.

Bentley et al. propose that decision-making can be understood
along two dimensions. The first dimension represents the
degree to which an agent makes a decision independently
versus one that is socially influenced. The second dimension rep-
resents the degree of transparency in the payoffs and risks associ-
ated with the decisions agents make. While Bentley et al.’s model
is very appealing, we argue that emotions, a key element to under-
stand the way humans make decisions, are missing.
From early theorizing by William James, to Antonio Damasio’s

work on somatic markers, decades of research consistently have
shown that emotions play a central role in the decision-making
process (see, e.g., Bechara & Damasio 2005; Loewenstein
2000). For instance, in economic decisions, fear leads to risk-
averse choices, whereas anger leads to risk-seeking choices
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(Lerner & Keltner 2001). In medical decisions, positive affect
improves physicians’ clinical reasoning and diagnosis (Estrada
et al. 1997). In ethical decisions, social emotions such as guilt
can lead individuals to choose ethically (Steenhaut & Van
Kenhove 2006). These studies, among many others, strongly
demonstrate that emotions shape most of our decisions. Research-
ers in microeconomics, health, or ethics are already taking
emotions into account. It is now time for big-data and collective
behavior researchers to recognize the importance of the emotion-
al factor in the decision-making process.

In this commentary, we illustrate the importance of emotions to
predict people’s behavior using the example of a big dataset
derived from an ongoing large-scale smartphone-based, experi-
ence-sampling project (available at: http://58sec.fr/). Specifically,
we show that the happiness that individuals experience at time t
reliably predicts the type of activities they choose to engage in
at time t+1.

Subjects voluntarily enroll in the experiment by downloading
and installing the mobile application “58sec”. They are then pre-
sented with questionnaires at random times throughout the
day – henceforth referred to as tests. Random sampling is
ensured through a notification system that does not require
users to be connected to the Internet. The minimum time
between two tests is set to one hour to avoid large artifactual
auto-correlations between answers to the same question in con-
secutive tests. At each test, participants are asked to rate their
current mood on a scale from 0 (very unhappy) to 100 (very
happy) and to report which activity they are currently engaged
in, among other questions. Activities can be selected from a list
of 25 non-mutually exclusive choices that, among other activities,
include doing sports, working, resting, praying/meditating, shop-
ping, and commuting.

To illustrate the dynamic between emotion and decision-
making, we randomly selected 5,000 people from our database
and investigated how their daily choice of activities (e.g.,
whether one decides to spend the evening working out or watch-
ing TV) is influenced by their emotion. Specifically, we tested how
much mood reported within one test (time t) predicts the activity
reported within the next test (time t+1). For each possible activity,
a logistic regression model is fitted for the probability of the
activity (dependent variable) as a function of previously reported
mood (independent variable). Mood at time t may be correlated
to mood at time t+1, which itself correlates with the activity at
time t+1. To cross out this indirect effect of emotion on decision,
mood at time t+1 is included in the model as a covariate.
Emotions closer in time to a decision may better predict its
outcome. To capture this notion, we included an interaction
term between the (random) time between the two tests and
mood at time t.

Big datasets allow many variables to be compared simul-
taneously without diluting the effect of interest in the correction
required to account for the multiple comparisons. For the same
underlying effect size, the p-value will indeed decrease as the

number of data points increase. More data points therefore
reduce the number of Type II errors (false negatives), for a con-
stant Type I error rate (false findings). Accordingly, the threshold
on the p-value can be reduced from its typical value (e.g., 0.05) to
also decrease the number of findings that are false. In this study,
we set the significance threshold at p < 0.001 to increase the con-
fidence in our findings.

Significance testing was carried out on the coefficient (Betapred)
of mood at time t in the prediction of each action at time t+1. The
resulting 25 p-values were corrected for multiple comparisons
using Bonferroni correction. Each of the 5,000 subjects partici-
pated in an average of 13.1 tests. Those subjects who participated
in only one test were discarded since their test results did not
convey information about the prediction of emotion on decision.
This gave rise to a total of 59,663 data points from which the logis-
tic regression could be fitted.

Five activities were significantly predicted by mood at the p =
0.001 threshold after Bonferroni correction (Fig. 1): working
(Betapred = 0.48, p < 10−12), resting (Betapred = 0.38, p < 2 × 10−4),
eating (Betapred =−0.34, p < 5 × 10−4), doing sports (Betapred =
−1.3, p < 10−9), and leisure (Betapred =−0.81, p < 3 × 10−4). These
results indicate that mood significantly predicts people’s decisions
about what to do next, stressing the importance of emotion on
decision-making.

Big data and large-scale experience sampling through pervasive
technologies offer unprecedented opportunities to understand
collective behaviors. Such methods are particularly suited to study
collective behavior as its causes often involve complex interactions
between sensitive variables. One archetypal example of such collec-
tive behavior is decision-making which involves independence of
the agent, transparency of the payoffs, and emotional state.
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Abstract: We apply Bentley et al.’s theoretical framework to better
understand gender discrimination in online labor markets. Although
such settings are designed to encourage employer behavior in the

Figure 1 (Taquet et al.). Five activities are significantly predicted by mood. The figure presents the data in red (aggregated by mood in
bins of 2 levels: 0–1, 2–3, … , 99–100) and the corresponding logistic curve in blue, corrected for mood at time t+1 and the interaction
between mood at time t and time between tests. The shaded area corresponds to two standard errors above and two standard errors below
the curve. A color version of this image is available at http://dx.doi.org/10.1017/S0140525X1300191X.
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different domains of human decision making. In what follows, we
argue that this map fails to capture the relationship between
social influence and payoff transparency.

Bentley et al. have interpreted their model as a “principal-com-
ponents representation” (target article Abstract), which assumes
that two axes are orthogonal to each other. However, it is well
documented in social psychological literature that social influence
and payoff transparency influence each other to a great extent.
When two parameters are correlated with each other, one axis
should not be perpendicular to the other axis (DeVellis 2012,
p. 142). Thus, the map as well as the formula at the start of
section 2 should be revised to accommodate the hypothesized
angle that represents the covariance of the two key parameters.
Even though Bentley et al. did acknowledge this interaction in
some places (e.g., “Intuitively, what is happening here is a pile-
up of correlated behaviors caused by the interaction of social influ-
ences coupled with strong enough intensity of choice”; target
article, sect. 2.2.1, para. 2), when they compare their map to a
Google map (sect. 1, para. 6), they run the risk of misleading
the readers into believing that the two axes are perpendicular to
each other.

Decision-making is a dynamic process in which transparency
and social influence invariably interact with each other. Under
social influence, even the most transparent decision-making task
becomes ambiguous. For example, in a classic conformity
experiment (Asch 1951), participants were instructed to complete
a perceptual task in which they had to match the length of a given
line with one of three comparison lines. Although the correct
judgments were easy to make, 75% of the participants made an
incorrect judgment in at least one trial when all the confederates
gave the same wrong answer. Thus, social influence can mask even
the most transparent decision. Under social influence, even simple
tasks like line comparisons are not as transparent as when there is
no social influence (Asch 1951; 1952; 1956). Moreover, other
studies have shown that social influence could change one’s
cost–benefit estimation of a decision (Louis et al. 2005).

On the other hand, people are more likely to seek social influ-
ence when facing opaque decisions than when facing transparent
decisions (Deutsch & Gerard 1955; Stasser & Davis 1981).
Deutsch and Gerard (1955) also asked participants to compare
lines just like Ash did in the aforementioned study. In half of
the trials (visual condition), the lines were physically present
when participants and confederates made their judgments.
Thus, in this condition, the decisions are fairly transparent.
However, in the other condition, the lines disappeared before
the participants had the opportunity to make judgments; hence,
the decisions depended on memories and were less transparent
than decisions in the first condition. Results showed that partici-
pants in the second condition were more likely to conform to
social influence than those in the first condition.

When people have little knowledge about what to base their
decisions on, it is helpful to imitate the successful judgments or
to average the judgments of others to exploit the “wisdom of
crowds” (Gigerenzer & Gaissmaier 2011). Findings from neural
imaging researches support this claim by showing that social infor-
mation processing and decision making have shared neural sub-
strates (Tomlin et al. 2013). Opaque decisions drive people to
seek social influence.

We recently conducted a survey (Zhou 2013) to examine
whether transparency and social influence correlate with each
other in daily decision making. We asked 55 participants to
think about one upcoming decision they have to make in real
life. Participants wrote down keywords best describing this
decision. Next, participants rated how transparent the decision
payoff is to them and how much social influence they are under
in making the decision on an 11-point scale (0 = not at all; 10 =
very much). The order of these two questions was counterba-
lanced so that half of the participants rated the transparency
first and half of them rated the social influence first. Regardless
of which question was asked first, social influence and payoff

transparency turned out to be negatively correlated, (r(53) =
−.71, p < .0005). These results support our argument that social
influence and transparency interact with each other to a great
degree and cannot be considered as independent dimensions.

In conclusion, we agree that Bentley et al. have provided a
comprehensive map to evaluate collective behaviors in the
big-data era. We also agree that this map will lead to new
promising hypotheses on human decision making. However,
Bentley et al. have not represented the interaction of the two
axes on their map in a precise manner that would reflect the
factual nature of the interaction. The accurate depiction of
the covariance of social influence and payoff transparency is
critical because it exerts direct impact on decision making in
the digital age. The map proposed in the target article would
function more quantitatively and accurately if it were revised
taking the interaction between the two dimensions into
account.
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Abstract: In a recent New York Times column (April 15, 2013),
David Brooks discussed how the big-data agenda lacks a
coherent framework of social theory – a deficiency that the
Bentley, O’Brien, and Brock (henceforth BOB) model was
meant to overcome. Or, stated less pretentiously, the model was
meant as a first step in that direction – a map that hopefully
would serve as a minimal, practical, and accessible framework
that behavioral scientists could use to analyze big data. Rather
than treating big data as a record of, and also a predictor of,
where and when certain behaviors might take place, the BOB
model is interested in what big data reveal about how decisions
are being made, how collective behavior evolves from daily to
decadal time scales, and how this varies across communities.

R1. Introduction

We are encouraged and inspired by the rich variety of com-
mentaries, noting that, in general, commentators found
something useful in our map of decision making.
MacCoun, for example, points out his similar model for
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binary decisions; Durlauf appreciates its elegance in sim-
plicity; Ross discusses how economics has already explored
the four quadrants of our map; and Uhlmann & Silber-
zahn apply the map quadrants to gender bias in a big-
data study of employment search patterns. A good
number of commentators even propose their own adap-
tation of the map quadrants, often as an added dimension,
including emotion (Buck;García, Torralba, & González
[García et al.]; Ruths & Shultz; Taquet, Quoidbach, de
Montjoye, & Desseilles [Taquet et al.]), network struc-
ture (Fortunato, Saramäki, & Onnela [Fortunato
et al.]; Swain, Sripada, & Swain [Swain et al.]), social-
learning biases (Le Mens; Mesoudi; Pfister & Böhm),
and cultural conception of time (Norgate, Davies,
Speed, Cherrett, & Dickinson [Norgate et al.]).
Others sought refinement of either the east–west dimen-
sion (O’Donnell, Falk, & Konrath [O’Donnell et al.];
Le Mens) or the north–south dimension (Spurrett).
Several contributed very useful ways forward in mapping
the terrain of the map in considerably more detail (Analy-
tis, Moussaïd, Artinger, Kämmer, & Gigerenzer [Ana-
lytis et al.]; Christen & Brugger;Hopfensitz, Lorini, &
Moisan [Hopfensitz et al.]; Keane & Gerow; Le Mens;
McCain & Hamilton; Moat, Preis, Olivola, Liu, &
Chater [Moat et al.]; Reader & Leris). Objections to
our map include oversimplification (Godzińska &
Wróbel; Reader & Leris) and misrepresentation of the
orthogonality of its axes (Bookstein; O’Donnell et al.;
Zhou, Xie, & Ye [Zhou et al.]).
Our response has three parts: the map, its terrain, and

some speculation about mapping the effect of big data on
collective behavior, including the kinds of self-aware
“looping” effects discussed by Christen & Brugger; Fan
& Suchow; O’Donnell et al.; Roesch, Stahl, & Gaber
(Roesch et al.); and Schmidt.

R2. The map

The theory used as the foundation for the BOB map – dis-
crete choice – is extremely broad (Ben-Akiva et al. 2012),
and the map is a tool to help behavioral scientists navigate
the large research terrain of its many applications. The
map is intended to facilitate interdisciplinary communication
and insights across different phenomena and different scales
of analysis, from big-data statistics to qualitative observation
at the individual scale. As Ruths & Shultz put it, the
problem is highly dimensional, and the BOB map provides
a framework on which future work can productively build.
Spurrett takes us to task for fuzzy definitions of transparency
and payoffs, but we think this flexibility is necessary to get
people to use it as a basis for interdisciplinary communication
and big-picture research, along the way making their own
adaptations and modifications. To communicate with a
business audience or public policymakers, for example, the
north–south axis might be presented as extending from
few choices in the north to many overwhelming choices in
the south. Alternatively, as Buck advocates, the north–
south axis might instead extend from “rational” to “emotion-
al,” whereas in discrete-choice economics it would be called
the “intensity of choice.” As we specify below, it all corre-
sponds to closely related formulations mathematically.
These different shades of interpretation may provide

multiple proxies to be measured in big data, which

Godzińska & Wróbel rightly call for. For it the map to
be applicable to decision making, anywhere from prehis-
tory to the era of big data, we need a minimalist structure
that allows for added elements such as emotions collected
through surveys or text mining, different concepts of
time, kinship or other cultural constructions recorded in
anthropology, or the millennia of material culture in the
archaeological record. Consider the vast range of scales
from the population-level patterns in big-data studies of
language use in online social media to the activity within
individual brains. The spirit of our map is to use big data
to generate hypotheses that are then tested by other
means (including qualitative) at the individual/group
level, which Godzińska & Wróbel invite us to consider,
or even the level of neurobiology discussed by O’Donnell
et al.We agree with Le Mens and with Roesch et al. that
future uses of big data will include more sensitive measure-
ments and more varied sources of information as the brain–
computer interface develops. The BOB map provides a
means of bridging scales of time and population. As
Keane & Gerow and Roesch et al. point out, big-data lit-
erature puts a microscope on individuals but often under-
plays the complex distributional effects and dynamics that
are visible at this large scale but also require a time depth.
Ross misunderstood us when he stated that we were

relegating all economics to the northwest quadrant; we
were putting only Homo economicus there. We actually
see most of behavioral economics as lying just east of the
northwest quadrant. Nevertheless, while we were careful
not to map whole disciplines or individual researchers
into the quadrants, we recognize that the bulk of literature
in any one (sub)discipline tends to gravitate toward one of
the quadrants.
Godzińska &Wróbel also see the map as too simplified

to capture the essence of decision making, but most com-
mentators accepted our invitation to fill in the map. The
engagement of responders and the diversity of proposals
to adapt the map help justify its simplicity, as Durlauf
and MacCoun discuss. Even if a more complicated
shape, such as the globe or tetrahedron suggested by
Bookstein, could better capture certain interrelations,
the cost would be the interdisciplinary common ground,
and few in the BBS community would adopt these more
complicated heuristic models. Furthermore, a more com-
plicated geometry might make things worse by assuming
too much. In other words, Bookstein rightly reminds us
that “the map is not the territory.” We agree; the simple
geometry is deliberate so that few would make this
mistake. The simple two-dimensional form invites others
to apply it or even modify it to suit their interests.
Together with Bookstein, Zhou et al. and Godzińska

& Wróbel object to the “structuralist” dichotomy we
have implied by the orthogonal axes, maintaining that trans-
parency itself is socially influenced. Reader & Leris use-
fully caution against treating payoff transparency as a
single entity, reminding us that transparency and the
costs of decision making likely determine whether social
or individual information is used. Zhou et al. present
survey results in which social influence correlates with
payoff transparency. We do not dispute either that bt and
Jt may correlate, or that in discrete-choice theory covariates
that go into determining social influence and payoff trans-
parency may indeed be correlated. We doubt, however,
that the correlation will be the same in all cases, and one
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can easily envision situations where the two are anti-corre-
lated or uncorrelated. Rather than assume some fixed cor-
relation, the map is intended to represent how these shifts
in decision making happen in any possible direction rather
than just on fixed diagonals of assumed covariance.

R2.1. Customizing the map

So far, we have explored the map as we presented it, but as
we noted earlier, we welcome the proposals to customize
the map with added dimensions. Norgate et al. suggest
that a crucial added dimension would represent the conti-
nuum between perception of “clock time” versus “event
time,” noting that the big-data era may be shifting societies
from clock time back to event time, which presumably is at
the primordial end of the spectrum. This relates the tran-
sition of our digital era to the classic anthropological formu-
lation of a prehistoric transition from immediate return
(hunter–gatherer) to “delayed return” (e.g., agricultural)
societies. More generally, it fits very well into the discussion
of forward-looking agents, which we discuss in the follow-
ing section. Norgate et al. point out the existence of cul-
tures with an identifiable time orientation toward the
future, which Moat et al. have shown in their big-data
studies (e.g., Preis et al. 2012; 2013) to have economic
advantages.

Several commentators emphasize the relevance of
emotions in decision making. We confess we had con-
sidered emotions to be a proximate cause of a decision,
but the arguments of Buck, García et al., Ruths &
Shultz, and Taquet et al. are compelling concerning the
fundamental importance of emotions to decision making.
There are several ways of introducing emotions. One is to
integrate them as a third dimension to the map, as pro-
posed by García et al. Alternatively, emotion could be
treated as another covariate in dynamic extensions of dis-
crete-choice theory, which can accommodate such forms
of decision making (Ben-Akiva et al. 2012). Perhaps most
intriguing is the suggestion by Buck to modify the north–
south dimension in order to reflect emotions directly, so
that the continuum ranges from purely emotional decision
making (rather than opaque) in the south to purely rational
(rather than transparent) in the north. In fact, if emotions
can be used as a proxy for transparency or intensity of
choice, then this presents a complementary means of
measuring latitude on the map. This could be calibrated
through various big-data measures of emotions, such as
the smartphone self-assessments that Taquet et al. discuss
(and which they correlate with decisions), or the frequen-
cies of word stems on large sources of language use such
as Twitter or Google’s Ngram viewer (Acerbi et al. 2013;
Lampos & Cristianini 2012; Tausczik & Pennebaker 2010).

We attempted to relate the map to generalized network
structures in our Figure 8, and Fortunato et al. have pro-
posed adding network structure as a third dimension, from
highly clustered to fully connected networks – a dimension
that is central to the famous small-world network formu-
lation of Watts and Strogatz (1998). Swain et al. speculate
that the east–west dimension might offer important
insights into the dynamics of neural connectivity in small-
world properties of brain networks implicated during
emotion, social stimuli, social anxiety, and autism.
Because small-world networks have been investigated,
both within the brain and between brains, network theory

provides another unifying framework, as indeed networks
have much to say about the short-tailed versus long-tailed
distributions we discuss in reference to the map. Fortunato
et al. point out that the collective outcome depends on
social-network structure the more that agents stick to
their choice rather than perpetually updating. This updat-
ing is nearly equivalent to adding noise and moving south-
ward on the map, and as we suggested in Figure 8, specific
network structure is probably more important in the north-
east than in the southeast.

R3. The terrain

Several commentators contributed useful ways forward in
mapping the terrain of the map in more detail. This
could be through measurement – such as sophisticated
data extraction (Moat et al.) or subtle changes in distri-
butions (Keane & Gerow) – or through multistage
decision models (Analytis et al.; Hopfensitz et al.;
McCain & Hamilton), or through the remarkably
simple addition of “contour lines” (Christen &
Brugger). We see the computer simulation by Analytis
et al. as consistent with the predictions of our map: We
just need to reverse the columns of their figure such that
their “popularity-cue heuristic” model and its associated
uniform distributions is in the west and their “popularity-
set heuristic” model is in the east. In their two-stage
decision model, each agent first eliminates the majority
(e.g., 90%) of options. Agents following the popularity-set
heuristic then choose among the shortlisted items
through social influence, with probability proportional to
popularity. This leads to just the kind of right-skewed distri-
butions that we would expect in the east. Because agents
choose the best from among only a 10% random sample,
rather than from among all samples, the popularity-cue
heuristic yields a more uniform distribution, consistent
with the noisy southwest. In other words, the shortlisting
stage of the popularity-cue heuristic is random selection,
that is, pure southwest (b = 0).
Similarly, any social influence under the popularity-cue

heuristic is fairly weak because it is activated only after
shortlisting and only as a “fourth attribute” among three
other attributes that remain reflective of quality. This
repeated 10% random-sampling process weakens the track-
ing of quality, and as a result, the popularity of choices
increases slowly in the direction toward the item of
highest quality (from 0 to 100). Referring to the concern
of Roesch et al. about rate of change, the popularity cue
may only gradually sort out the best choices from the
worst. Perhaps after more time steps, the gradient would
be steeper from the worst to best (item 1 to item 100).
We might therefore categorize the popularity-cue heuristic
as being in the southwest quadrant as a result of the
random sampling in step one, but in the northeast
quarter of that quadrant because of the transparency (b > 0)
and weak social influence in step two.
Like Analytis et al., who consider a two-stage process,

Hopfensitz et al. also study games that have multiple
stages. These games may be usefully studied in the
extended BOB framework of our response here by model-
ing them as nested Logit Quantal response games where
the first nest is the set of games one chooses to play in
the first period, and the second nest is the set of strategies
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of the game chosen in the first period. The analog of (b, J)
would be (b, J) for the choice of game in the first period and
(b′, J′) for the second-period strategy choice of the game
played in the second period. The choice of game in the
first period includes the “game” of an “outside option” as
in the commentary by Hopfensitz et al. Future research
in multistage games proposed by Hopfensitz et al. is
promising.
Similarly,McCain & Hamilton convince us that includ-

ing social interactions and quantal responses at each stage is
an exciting agenda for future research. McCain &Hamilton
raise the interesting question of what happens if (b, J) vary
across quadrants of the map in the context of anti-coordi-
nation games (Bramoullé 2007). Imagine there is a stop-
light that has a large but finite penalty if you run a red
light, and imagine their Drive On game being played by a
pair of players with foggy glasses (a small b). When b = 0,
each player plays “go” with probability 1/2 and plays
“wait” with probability 1/2, and the probability of a crash
is 1/4. But when b is infinite, the player facing a red light
waits and traffic proceeds ideally.
We have emphasized that the Jt parameter is an attempt

to capture social influences, especially those types of influ-
ence that possess a “social multiplier” of policy relevance,
which was stressed by Manski (1993) as being different
from “spurious social effects” (Shalizi & Thomas 2010).
LikeMesoudi and Le Mens, Ruths & Shultz are unsatis-
fied with the way we lump together all social-learning biases
into the east. The map does, however, roughly cover the
intensity of social tie tracked along the north–south dimen-
sion in the east. This makes it relevant to Granovetter’s
(1973) strong versus weak social ties and how the strength
of these ties correlates with emotional closeness (e.g., Hill
& Dunbar 2003) – issues to which O’Donnell et al. refer.
Hence, the north–south dimension does distinguish
between the adaptive ratchet in the northeast, where
social learning adaptively focuses on the most useful role
models, and unbiased imitation in the southeast.
The Arab Spring, mentioned by Roesch et al. and

O’Donnell et al. may be an example of the ambiguity of
the effect of social media. When Gladwell (2010) pointed
out “why the revolution will not be tweeted” – coinciden-
tally just weeks before the Arab Spring uprising – he
meant that revolutions require the strong social influence
of the northeast, such as face-to-face interaction, rather
than the weak ties of social media in the southeast. Social
media are good for retrieving stolen cell phones left in
cabs but not for carrying out revolutions, the success of
which relies on organized hierarchy, not on here-today-
gone-tomorrow social networks.
We are very aware that, as Ruths & Shultz point out,

sigmoidal adoption curves may indicate social learning
but that other models of independent learning (the sim-
plest assuming a normal distribution of independent
response times) can produce the same result (e.g.,
Bentley et al. 2012; Brock & Durlauf 2010; Hoppitt et al.
2010; Shultz 2003). This is why we propose distributions
as a primary pattern for estimating J along the east–west
axis of social influence. This tool can be refined, and we
agree completely with Keane & Gerow that exploring
the dynamics of how diagnostic popularity distributions
change through time would refine the geography of our
map within each quadrant. Fortunato et al. describe
their insight from the precise popularity distribution of

Wikipedia pages, and Keane & Gerow provide a nice
example of how Zipf’s Law in verb-phrase popularity
became more “winner take all” among financial-media cov-
erage as the stock-market crisis unfolded. Roesch et al.
suggest that we could use “the velocity of change of
decisions” and plot “vectors” on the map to show which
way things are moving (vector direction) and at what rate
(vector magnitude).
Although distributions are used to characterize the east–

west axis, we agree with Analytis et al. that distributions
may not be particularly diagnostic of transparency along
the north–south axis. This is determined by the parameter
b, which is sometimes called the “intensity of choice.” It
measures the level of noisiness in choice – for example,
when b = 0, noise in choice is so large that choice is comple-
tely random over the choice set. When b =∞, transparency
in the relative values of the payoffs to each choice is so high
that there is no doubt whatsoever which choice yields the
highest payoff. The intensity of choice, bt, is a precise
and useful way to model the concept of “transparency” at
each date t, where (1) bt = 0 corresponds to the lowest
level of transparency and the farthest south on our map,
and (2) bt =∞ corresponds to the highest level of transpar-
ency and the farthest north on our map. We realize that this
modeling and conceptualization of “transparency” will not
capture all useful interpretations, but we believe that it
does capture a useful subset and makes a useful linkage
to the very large and successful discrete-choice literature
(Ben-Akiva et al. 2012).
The north–south axis (the bt axis) is a useful way of

looking at the gain in precision of predicting the future
using big-data sets. Prediction requires an expectation by
forward-looking agents, and this applies to social transpar-
ency, as we discuss below regarding the fascinating future
of “looping,” to use the term of Christen & Brugger.
By linking our approach to some classes of social inter-
actions games, for instance, Hofensitz et al. suggest that
the impact of social ties will be different in the north
than in the south. We use their suggestions as an opportu-
nity to explain the theory behind our Equation 1 of BOB,
which lies in the domain of logistic quantal response
games and quantal response (Nash) equilibria (McKelvey
& Palfrey 1995) and has been extended to include social
interactions and covariates (Blume et al. 2011; Brock &
Durlauf 2001a; 2006). Let there be G groups with I
players in each group. We can think of I as being a large
number so that the law of large numbers gives a good
approximation in what follows. Assume the groups are dis-
joint, that is, non-overlapping, for simplicity. As a stochastic
best-reply function for player i at date t, consider the fol-
lowing modification of BOB’s Equation 1 for a representa-
tive group g. The probability, Pitg(k), that player i in group g
chooses k is then

Pitg(k) =
1
zitg

ebtU
(
xiktg ,Jt!P

e
itg(k)

)
(1.1)

where i, k, and g take the integer index values from 1 to I,
Nt, andG, respectively. The expected value, !P

e
itg(k), denotes

the belief, that is, the point expectation, that player i in
group g holds on the average probability that k is chosen
within his or her group.
Suppose point expectations are homogeneous for all

players in all G groups – that is, assume !Peitg(k) = !Pt(k).
Then we have, further assuming that all covariate vectors
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are homogeneous across all players and all groups,

Pt(k) = Pit(k) =
1
zt
ebtU xkt,Jt!Pt(k)( ). (1.2)

The fixed point !P∗(k) = k of Equation 1.2, which we might
consider a “norm” of collective behavior, has been more
formally labeled as a “logistic quantal response equilibrium
with social interactions” (Blume et al. 2011; Brock &
Durlauf 2001b; 2006; McKelvey & Palfrey 1995). For
example, say person i has both individual preferences con-
cerning choice k and forward-looking expectations con-
cerning the popularity of choice k. Combining these
influences as ak + ck′Xi + dk

′!Xg + Jk!Pg(k), the probability
that person i will choose item k is given by

P(k) = Pi(k) =
1
zg
eb
(
ak+c′kXi+d′k

!Xg+Jk!Pg(k)
)
. (1.3)

In Equation 1.3, each player i has a covariate vector, Xi, and
!Xg denotes the average covariate vector averaged over
players in i’s group g. A fixed point of Equation 1.3 is a gen-
eralization of Nash equilibrium for discrete-choice games,
and multiple Nash equilibria may arise when b≥ 0 and
Jk≥ 0 for all k choices (Brock & Durlauf 2006).

At the extreme north of our map, b =∞, and there can
be many fixed points when the Js are positive. A full analysis
is beyond the scope of our response here (see Brock &
Durlauf 2006), but if we consider just the binary case,
with N = 2 (Brock & Durlauf 2001a), we can fully charac-
terize the set of fixed points for the case J1 = J2 = J. For
the case of non-negative social interactions, J≥ 0, there
can be three equilibria in many cases when bJ > 1 (e.g., in
the northeast), if the difference among payoffs is not too
large. MacCoun’s framework is similarly based on binary
decisions; hence his “balance of pressures” (BOP) model
and the BOB model apply to the kinds of tipping points
and “voter” outcomes that MacCoun mentions, including
threshold effects.

Another good representation of the north–south axis is
“noise,” as suggested by Swain et al. with noise increasing
as we move south. This noise dimension is what the social-
physics literature of fairly deterministic “preferential
attachment” network models has yet to engage with. As a
case in point, Fortunato et al. argue that in a fully con-
nected network, the random imitation of the southeast
and popularity-based choice of the northeast (we actually
map conformity in the equatorial east) are the same,
through preferential attachment. But this neglects the
greater degree of random noise as we move south, and
hence the noise in choice popularity. Whereas the highly
right-skewed distribution does not change much moving
down the eastern edge of the map, as Analytis et al. also
mention, the dynamics do change. This is the point of
our Figure 2b.

To explore what happens with the greater noise in the
south, let us examine equilibria for the extreme south,
where b = 0. We have P(k) = 1/N, where N is the number
of possible choices, that is, all players are just making
choices at random, with the probability of each choice
equal to 1/N. When we are in the deep south, where b
approaches 0, we see that no matter how strong social
ties are, that is, no matter how large J is, there is only
one equilibrium. However, when we are in the extreme
north, where b is very large, there will be, in many cases,
three equilibria in the extreme northeast but only one

equilibrium in the extreme northwest. In the extreme
southeast, where J is very large, a small value of b can
still satisfy bJ > 1, so multiple equilibria can easily occur.

R4. The future of big data

The southeast is where we find the unpredictability of success
that Watts, Salganik, and colleagues have revealingly demon-
strated over the years (e.g., Salganik et al. 2006; Watts &
Hasker 2006). This underlies our main question concerning
big data: Will the popularity of crowd sourcing soon undo
itself, decreasing b through information overload while simul-
taneously increasing social awareness of the crowd, J, and
hence move online society toward the southeast? Slow move-
ment of the key parameters (b,J) from west to east and from
north to south, but especially from northwest to southeast,
can easily produce behavior such as bifurcations and phase
transitions, as unique equilibria morph into multiple equili-
bria (Berry et al. 1995; Brock & Durlauf 2001a; 2006).
Hence, Moat et al., who describe remarkable discoveries
of the predictive nature of big data, may soon need to con-
sider future increases in social-interaction effects as those
predictive methods become commonplace.
We are grateful toChristen&Brugger for contributing a

historical perspective through their invocation of Hacking’s
(1992; 1995) principle of “looping,” in which the identifi-
cation of a phenomenon then feeds into the phenomenon
itself. This is exactly why we believe that as predictive as
big data might be at the moment, as soon as everyone
becomes aware of these predictive algorithms, the compe-
tition to outpredict your competitor –whether in fashion,
business, or the like –will tend to increase the unpredictabil-
ity, much like what we see in the stock market. For example,
whereas natural systems tend to exhibit early warning systems
before critical transitions, financial systems are much more
elusive (Scheffer et al. 2012).
Fan & Suchow propose that self-awareness can lead a

group to seek out new knowledge and reposition itself on
the map. They propose that motivation to solve a
problem is a key variable driving groups northward on
the map. We are not sure that the crowd can guide its
own trajectory, however. We all seek to head north, but
as Schmidt points out, the onslaught of big data may
break lots of compasses, given that practically any opinion
on any issue from climate change to genetically modified
foods to measles vaccines and evolution can be found
online. As Schmidt points out, even human identity
becomes ambiguous as each person’s digital shadow
grows with multiple memberships, enrollments, sign-ups,
connections, and so on. Intriguingly, Schmidt proposes that
the southeast may subdue the data deluge “through a
global relativity,” while at the same time making the
problem worse through collective behaviors. Schmidt
rightly asks whether any of us can be experts anymore,
which poses the compelling question of what happens if we
were to crowd-source all our decisions, as is already explored
in current science fiction. Schmidt suggests this may already
be happening in medicine, perhaps the most information-
deluged science, where the diagnosis of newly named syn-
dromes has been rising dramatically in a way that is clustered
in time and space, suggestive of the southeast.
As O’Donnell et al. point out, the neural systems for

self-knowledge are involved in social cognition. In fact,
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Christen & Brugger add self-reflection to the list of
suggested third dimensions to the map because social influ-
ence depends on the models people have of themselves and
what drives their behavior (e.g., a conscious effort to be a
nonconformist) and, of course, whether one is aware of
this self-reflection (buck the nonconformist trend by
being ironically conformist, for example). This looping
can go on forever, reminiscent of what Yogi Berra once
said about a popular Italian restaurant in St. Louis: “No
one goes there anymore. It’s too crowded.”
As agents compete to outpredict each other, we enter

Mesoudi’s discussion of adaptive landscapes (see also
Mesoudi 2010; Mesoudi & O’Brien 2008a; 2008b). Ander-
son et al. (1992) give us a formula for this:

Emaxi1{1,2,...,Nt}{Ũ } = 1
bt
ln

∑Nt

i=1
ebtUi

)(
(1.4)

which relates to ideas and techniques from entropy maximi-
zation in Bayesian statistics – tools from mean-field theory
that allow us to approximate more complicated social
networks, economics, and finance (Ben-Akiva et al. 2012;
Brock 1993; Hommes 2013). Note that as bt → ∞
from south to north, this landscape function converges to
Ui∗ , i∗ = argmaxk{Uk} and hence the landscape of
Equation 1.4 moves toward a spiked, or so-called “Mount
Fuji,” shape on the space of choices, {1, 2, …, Nt}. In con-
trast, moving from west to east, as Jt increases, multiple
equilibria become possible so the landscape becomes
more “rugged,” and the potential for instability grows. Gen-
erally speaking, instabilities in collective dynamics will be
north of the “equator,” and the northeast especially is
where instabilities and emergent bifurcations could link
to studies of early warning signals (Scheffer et al. 2012).
Roesch et al. mention the “exponential velocity” of

change with access to new technology, but we need to be
careful about tempo versus mode of change, which might
lead us to ask whether the current rate of change is any
more “exponential” than in the early twentieth century,
with most technologies taking off in the same sigmoidal
form (Bentley & O’Brien 2012; O’Brien & Bentley 2011).
Rather than accelerating change, in some cases increasing
access to crowd-sourced data may lead to stasis, especially
if accurate popularity statistics are approached with a con-
formity bias.
On an adaptive fitness landscape, such as whatMesoudi

describes, there are different ways to avoid getting stuck on
a low peak when higher peaks are nearby. The most
straightforward is a global view of the landscape from the
authoritative vantage of a “control tower,” which is
the beauty of the Sixth Sense Transport system that
Norgate et al. have developed formitigating traffic problems.
Without this kind of top-down control, the other means is an
optimal balance of information producers and information
scroungers, as Mesoudi would describe it (see also Mesoudi
2008), or a balance of “exploration and exploitation,” in the
more business-like language of Axelrod and Cohen (1999).
On our map, this means an optimal, situation-specific

balance of noise (the opposite of transparency) and social
influence. Clearly, the balance is critical. Norgate et al.
point out that “increased imitation can be desirable,” and
Zhou et al. note that when people have little knowledge
on which to base their decisions, it is helpful to imitate the
successful judgments, or to average the judgments, of
others. But under a deluge of information, imitation might

also bring about the kind of “pluralistic ignorance” that
Christen & Brugger suggest could stabilize social dynamics
in a suboptimal state. Crowd-sourcing may even preserve an
undesirable status quo. As Uhlmann & Silberzahn discuss,
we assume that the best person for the job gets hired – the
northwest – but actual online hiring decisions tend to drift
southeast, as information overload leads employers to rely
on gender stereotypes as a shortcut decision strategy.
As a result, noise can be a means of (unintentionally)

exploring the landscape, as nicely shown by Hopfensitz
et al. with their game involving ambiguous payoffs (less-
transparent payoffs in our language) and strong social inter-
actions, which can yield a more efficient outcome than the
same game with less of those aspects in the north. Noise in
the dynamics of the game can lead to coordination equili-
brium with a higher level of social welfare when multiple
Nash equilibria are present in coordination games
(Kandori et al. 1993). Hopfensitz et al. formulate their
first game so that each player who has ties to another
player chooses his or her strategy to maximize a combined
utility that is a weighted sum of his own selfish interest and
the joint interest of the two players. If the function U in
BOB’s Equation 1 is replaced by the Hofensitz et al. func-
tion, and b = 0, then the players will choose their strategies
randomly with equal probability, and yet, as Hopfensitz
et al. point out, this may yield a higher average welfare
than in the case where b is large.
O’Donnell et al. and Pfister & Böhm both object to

the idea of “independence” as a possibility for human
beings, whose minds are social, even when physically
alone. They point to neuroimaging studies that show
humans are prone to adopt ideas that they may think are
becoming more popular (see also Berger & Le Mens
2009; Berger & Milkman 2012; Gureckis & Goldstone
2009), even if they happen to be alone at the time. As
O’Donnell et al. note, the neural systems for self-knowl-
edge are involved in social cognition, and social inclusion
versus rejection involves the same areas of the brain as
physical pleasure and pain. As compelling as the evidence
for the “social brain” may be, this is more of a semantic
issue for us, to be plotted on the map using data at the
scale of individuals or populations.
AsMoat et al. correctly point out, we were not generous

enough to the new big-data sciences of predicting near-
future behavior based on recent past behavior. Roesch
et al. and Moat et al. report on the incredible progress in
data generation concerning individual behaviors correlated
with all the other geolocated measures one can derive such
as ambient temperature, noise level, luminance infor-
mation, and energy consumption. Our review was only
the tip of the iceberg in terms of big-data studies aimed
at forecasting future behavior such as financial and com-
mercial activity, economic trends, epidemics, and even
crime. As behavioral scientists, we are in awe of the devel-
opments in e-commerce, such as recommendation systems
in retail applications. As a clarification, we would see com-
puter algorithms recommending products or services as
probably qualifying as social influence, even if the rec-
ommendation algorithms are using social information to
act on people who may be alone at their computers (an
ambiguity raised by O’Donnell et al.).
Predicting the near future by extrapolating the recent

past is a huge advantage of big data, especially because it
does not require deep understanding of the causality
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behind behaviors in terms of decision making. Causality is
enigmatic in the same way that social diffusion (northeast)
can be so difficult to distinguish from (northwest) homo-
phily (Aral et al. 2009), but for prediction and intervention,
this may make little difference. The prescription is to inter-
vene at the point of highest activity, with or without knowl-
edge of its cause. Moat et al. make the important point
that not only can big data assist in “predicting the
present” (Choi & Varian 2012), but it can also play a
major role in predicting the future – for example, in the
trading-strategy-returns studies that they cite.

Although our map is an extremely coarse-grained
approximation of the highly dimensioned correlation and
prediction studies that Moat et al. cite, we show here
how the bt index of “transparency” relates to those
studies. Note that

ln
Pt(k)
Pt(Nt)

( )
= bt (Ukt − UNt ,t). (1.5)

In applications of discrete-choice theory to correlation
and prediction, the Us are parameterized as functions
of observable covariates and parameters and taken to
datasets for hypothesis formulation, estimation of par-
ameters, and testing of hypotheses. This activity includes
correlation studies and prediction studies. If bt = 0, the
differences in the estimated values of the Us give no
information as to the observed frequencies of choices
between choice k and choice Nt at date t. In this case,
the covariates give no information on predicting the
present or the future. More concretely in the Preis
et al. (2013) study that Moat et al. cite, we could
think of big-data sets from Google Trends as a way of
not only improving the specification of the Us in
Equation 1.5, but also of increasing the size of bt relative
to previous studies.

To be sure, this may soon be less painstaking with better
data and algorithms based on pioneering studies by Aral
and Walker (2012) and others, at which point the map
will be even more appropriate because measuring the
east–west dimension might be routine. Mapping the
nature of decisions is crucial because big data will soon
be part of our decisions rather than an independent
measure of them. Roesch et al. mention Project Glass
(Google Inc. 2012) and the ubiquity of big data in daily
activities, although we note that still only about a third of
the world’s population has Internet access. As the
growing public familiarity with big-data patterns feeds
into the decisions themselves (Christen & Brugger;
Fan & Suchow; Schmidt), will big data still be as predic-
tive (Moat et al.), or are we heading toward a situation, as
with financial markets, where everyone is trying to outpre-
dict everyone else? How will collective behavior change as
we all become omniscient about global trends in those very
behaviors? Buck is correct to discuss McLuhan’s (1964)
“medium is the message” philosophy, which underlies our
basic question of how big data will change behavior and
not merely record it objectively.

In conclusion, we again want to thank all the commenta-
tors for providing us much more in the way of excellent pro-
posals for modifying and extending the BOB map into areas
that we could not have anticipated. Our only regret is not
having the time and the space to respond to the comments
in the terms they deserve. We hope both our target article
and the accompanying commentaries will inspire other

behavioral scientists with an interest in decision making
to use the discussions as launching pads for their own
work. We very much look forward to what those others
have to say.
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